Question #2028054: linear algebra


Question: Consider the complex vector space \[{{\mathbb{C}}^{2}}=\left\{ \left( {{z}_{1}},{{z}_{2}} \right):\,\,{{z}_{1}},{{z}_{2}}\in \mathbb{C} \right\}\]. For each element \[\left( {{z}_{1}},{{z}_{2}} \right)\in {{\mathbb{C}}^{2}}\] find complex numbers \[\alpha \] and \(\beta \) for which

\[\left( {{z}_{1}},{{z}_{2}} \right)=\alpha \left( 1+i,1-i \right)+\beta \left( 2+i,2-i \right)\]

Do \(\left( 1+i,1-i \right)\) and \(\left( 2+i,2-i \right)\) form a linearly independent pair in \({{\mathbb{C}}^{2}}\) ? Do \(\left( 1+i,1-i \right)\) and \(\left( 2+i,2-i \right)\) span \({{\mathbb{C}}^{2}}\) ?

Solution: The solution consists of 222 words (2 pages)
Deliverables: Word Document

Like it? Share with your friends!

0

log in

reset password

Back to
log in
Do NOT follow this link or you will be banned from the site!